COAL PRODUCTION BY LONGWALLMINING- A STUDY AND ANALYSIS OF EQUIPMENT BREAKDOWN

CAUSE PATTERNS

Krishna Reddy Bhimavarapu*

Abstract

: Coal production is a very complex process. It involves several causes of equipment breakdowns leading to down times. These down times reduce the production drastically depending up on their nature and type of breakdown. Ultimate result of these breakdowns is low productivity and stress on the managerial personal for repairing and bringing back the equipment into working condition. The present paper attempts to identify the causes of down times of equipment and to find out the inter relationships between them. To check for the association between the occurrences of C_{1} to C_{12} a bi-variate frequency table has been obtained from among the occurrences of the variables and a Chi-square test has been applied.

[^0]
I) INTRODUCTION:

Energy is the fundamental resource for a variety of needs of modern living. Broadly, the sources of energy can be classified into conventional (Exhaustible) and non-conventional (Inexhaustible) energy sources. Coal, an exhaustible source of energy, contributes to a major part of the energy needs (60% nearly) of the country today. As it is evident that the coal reserves are depleting at a faster rate and there is every need to conserve them for our future generations. Coal production is undertaken in two ways, namely, Underground (UG) mining and Open Cast (OC) mining. Of the two methods, UG mining involves more complex mining process, needs rigorous as well as careful planning for the effective control and conservation of coal in its production (i.e., the production must keep in mind the higher percentage of extraction). In order to meet the ever-increasing demand of coal, the coal mining industry must keep pace with the latest and sophisticated technology to satisfy the demand. One such type of a highly mechanized technique used for coal production is long wall mining method. This method involves coal cutting and conveying it from the underground to the surface of the mine at a faster rate to satisfy the customer demand in varying quantities across the country.

The coal production through long wall mining experiences several problems which include the problems due to Incoming Power, Shearer, Armored Face Conveyor, Supports, Signals \& Communication and so on. The detailed list of the causes are given below.

Cause	Name	Cause	Name
C_{1}	INCOMING POWER	C_{2}	GATE-END BOX, TRANSFORMER, CONTROLLER, CABLE FAULTS etc.,
C_{3}	SHEARER	C_{4}	ARMOURED FACE CONVEYOR (AFC)
C_{5}	STAGE LOADER, LAMP BREAKER AND GATE BELT	C_{6}	FACE SUPPORTS, POWER PACK, HYDRAULICS \& WATER SUPPLY
C_{7}	FADE SIGNAL AND COMMUNICATIONS	C_{8}	OTHER BREAK DOWNS
C_{9}	SPARE PARTS	C_{10}	STRATA PROBLEMS
C_{11}	SHIFT CHANGE HOURS AND OTHER DELAYS	C_{12}	TRUNK CONVEYOR AND OUTBYE SYSTEM

If one controls these problems effectively, the production of coal can be in higher volumes with the same input resources so that the customer needs can be satisfied. Therefore, the

[^1]purpose of this paper is to identify the causes for down times so as to effectively control them and to help maximise the production.

II) OBJECTIVES:

The following are the objectives of the present paper:
i) To analyse the causes of breakdowns on the basis of panels and locations of the mine.
ii) To identify the difference between panels and locations with regard to the occurrences of causes of down times.
iii) To check for the dependency, if any, between the causes of down times.

III) DATA FOR THE STUDY:

The data for the study is collected from two places called as Location-1 and Location-2. The actual names of the places are not mentioned to preserve confidentiality as required by the mining company. In each of these places the coal is produced (extracted) through longwall mining technique. In the mining terminology this extraction is called as a panel. There are four panels in Location-1 and five panels in Location-2. It is observed from the records of the company that the respective panels in each of the two locations worked for the following number of days.

Table-1: Panel wise working days:

Panel number	Location-1	Location-2
1	204	139
2	93	286
3	128	235
4	377	286
5	Not applicable	303

The occurrences of breakdowns are classified into twelve causes. The occurrence of the cause on day to day basis is collected from these 9 panels for the entire duration of operation of each panel. The occurrence or non- occurrence of a cause on a day is recorded for the entire period of working of the panel using 1 and 0 . The following table presents the sample data collected for four days.

[^2]International Journal of Management, IT and Engineering http://www.ijmra.us

Table-2:Details of occurrences of causes:

Day	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}	C_{11}	C_{12}
1	0	0	1	1	0	1	0	0	0	0	0	0
2	1	0	1	1	0	1	0	0	1	0	1	0
3	0	1	1	0	0	1	0	1	0	0	0	0
4	1	0	0	1	1	0	0	1	0	1	0	0

We can understand from the above that on $3^{\text {rd }}$ day C_{2} (the $2^{\text {nd }}$ cause) has occurred and hence a ' 1 ' is assigned indicating its occurrence. Similarly, on the same day, we can notice the presence of ' 1 ' for $\mathrm{C}_{3}, \mathrm{C}_{6}$ and C_{8}. This indicates that these three causes have occurred on this particular day. The presence of number ' 0 ' for other causes indicates the non-occurrence of these causes on the said day. This table is also called as the incidence matrix.

Since many causes lead to down times of the equipment on any day, it will be of interest to examine the frequency of occurrence of the causes either individually or in combination with other causes, degree of association between the causes in terms of their occurrence on the same day. If a high degree of association exists among some of these causes, it is very likely that they all will have a common origin and hence improving the situation by controlling one will improve the overall situation. It is essential that the management understand the pattern of breakdowns for their minimisation and effective control. In order to facilitate this investigation, the following numbering scheme is adopted for naming the causes in operation on any given day. A power of ' 2 ' is assigned to each of these 12 variables in a specific way. The cause operating most frequently has been assigned with small number and so on as below.

$$
\begin{array}{lll}
\mathrm{C}_{1}=2^{2} & \mathrm{C}_{2}=2^{8} & \mathrm{C}_{3}=2^{1} \quad \mathrm{C}_{4}=2^{3} \\
\mathrm{C}_{5}=2^{5} & \mathrm{C}_{6}=2^{4} & \mathrm{C}_{7}=2^{10} \\
\mathrm{C}_{9}=2^{9} & \mathrm{C}_{10}=2^{6} & \mathrm{C}_{11}=2^{11} \quad \mathrm{C}_{8}=2^{0} \\
\mathrm{C}_{12}=2^{7}
\end{array}
$$

These numbers can be put into a vector V , where

$$
\mathrm{V}=\left(\begin{array}{llllllllllll}
4 & 256 & 2 & 8 & 32 & 16 & 1024 & 1 & 512 & 64 & 2048 & 128
\end{array}\right)
$$

A row in Table-2 is associated with a 12 component binary vector representing a day in terms of the occurrence of breakdowns. A typical occurrence of $4^{\text {th }}$ day breakdown after converting to 0 and 1 is

$$
\mathrm{I}_{4}=(100110010100)^{\mathrm{T}}
$$

[^3]Multiplication of vector V with vector I_{4} corresponding to $4^{\text {th }}$ day results in a composite index whose binary expansion reveals the pattern of causes operating that day. The number obtained as a result of the inner product of V and I_{4} is

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{XI}}^{4}=\{4 \times 1+256 \times 0+2 \times 0+8 \times 1+32 \times 1+16 \times 0+1024 \times 0+ \\
1 \times 1+512 \times 0+64 \times 1+2048 \times 0+128 \times 0\} \\
=\{4+0+0+8+32+0+0+1+0+64+0+0\}=109
\end{array}
$$

This helps in identifying the number of causes that are operating along with their names like $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{12}$. This total 109 can be decomposed to get back the details of occurrence of individual causes. Thus, we can determine the combination of causes operating on each day uniquely.

IV) FREQUENCY DISTRIBUTION OF CAUSE - PATTERNS:

After finding the total as explained above a frequency distribution of the totals has been obtained. This distribution enables us in identifying the most frequent combinations of breakdowns in each of the 9 panels (4 panels at Location-1 and 5 panels at Location-2). In what follows, the most frequently occurring combinations in each of the panels.

TABLE 3: LOCATION-1: PANEL 1 (Working days $=204$)	TABLE 4: LOCATION-1: PANEL 2 (Working days = 93)				
Frequency	Code total	Combination	Frequency	Code total	Combination
12	65	$\mathrm{C}_{8}, \mathrm{C}_{10}$	9	161	$\mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$
11	13	$\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{8}$	6	131	$\mathrm{C}_{3}, \mathrm{C}_{8}, \mathrm{C}_{12}$
10	1	C_{8}	5	129	$\mathrm{C}_{8}, \mathrm{C}_{12}$
10	2	C_{3}	5	179	$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{12}$
8	5	$\mathrm{C}_{1}, \mathrm{C}_{8}$	4	11	$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{8}$
8	19	$\mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{8}$	4	49	$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}$
7	8	C_{4}	4	163	$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$
7	17	$\mathrm{C}_{6}, \mathrm{C}_{8}$	4	171	$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$

TABLE 5: LOCATION-1: PANEL 3 (Working days $=128$)	TABLE 6: LOCATION-1: PANEL 4 (Working days $=377$)				
Frequency	Code total	Combination	Frequency	Code total	Combination
38	64	C_{10}	66	2	C_{3}
19	8	C_{4}	38	64	C_{10}
7	16	C_{6}	36	0	No breakdown
5	3	$\mathrm{C}_{3}, \mathrm{C}_{8}$	22	65	$\mathrm{C}_{8}, \mathrm{C}_{10}$

2012

4	161	$\mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$	21	8	C_{4}
3	24	$\mathrm{C}_{4}, \mathrm{C}_{6}$	9	16	C_{6}
3	131	$\mathrm{C}_{3}, \mathrm{C}_{8}, \mathrm{C}_{12}$	7	3	$\mathrm{C}_{3}, \mathrm{C}_{8}$
3	171	$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{12}$	7	81	$\mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{10}$
			6	1	C_{8}
			6	163	$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$
			6	171	$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$
			6	187	$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{12}$
			5	26	$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6}$
			5	178	$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{12}$
			5	185	$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{12}$

V) ANALYSIS OF CAUSE - PATTERNS:

A) Location-1:

In Panel $1, \mathrm{C}_{8}$ is most frequent with individual occurrence of 10 times and 46 times in combination with $\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{10}$ singly or severally.

In Panel 2, C_{8} is most frequent with one or more of $\mathrm{C}_{12}, \mathrm{C}_{5}, \mathrm{C}_{3}, \mathrm{C}_{4}$ and C_{6} to follow in that order.

In Panel 3, C_{10} has occurred for 38 days out of 128 days, while C_{4} and C_{6} individually have occurred for 19 and 7 days respectively. In occurrences of more than one cause C_{8} and C_{12} jointly are most frequent either with C_{3} or C_{5}.

Panel 4 of Location- 1 experienced 66 days of occurrence of C_{3} alone while C_{10} occurred for 38 days in a total of 377 days. A very interesting feature of this panel is that there is no breakdown for 36 days. Among the combinations C_{8} and C_{12} jointly occurred with some of the other causes predominantly. With this pair of C_{8} and C_{12} one can notice the occurrence of C_{3}, $\mathrm{C}_{5}, \mathrm{C}_{4}$ and C_{6} very often.

In conclusion, it is observed that C_{8} and C_{12} are crucial and are found to occur in combinations with others at Location-1.

| TABLE 7: LOCATION-2: PANEL 1
 (Working days = 139) | TABLE 8: LOCATION-2: PANEL 2 | | |
| :--- | :--- | :--- | :--- | :--- |
| (Working days = 286) | | | |

[^4]| 48 | 128 | C_{12} | 91 | 128 | C_{12} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 16 | 132 | $\mathrm{C}_{1}, \mathrm{C}_{12}$ | 38 | 136 | $\mathrm{C}_{4}, \mathrm{C}_{12}$ |
| 14 | 2048 | C_{11} | 30 | 64 | C_{10} |
| 10 | 136 | $\mathrm{C}_{4}, \mathrm{C}_{12}$ | 20 | 8 | C_{4} |
| 7 | 160 | $\mathrm{C}_{5}, \mathrm{C}_{12}$ | 19 | 129 | $\mathrm{C}_{8}, \mathrm{C}_{12}$ |
| 6 | 384 | $\mathrm{C}_{2} \mathrm{C}_{12}$ | 13 | 2 | C_{3} |
| 5 | 130 | $\mathrm{C}_{3}, \mathrm{C}_{12}$ | 12 | 160 | $\mathrm{C}_{5}, \mathrm{C}_{12}$ |
| 4 | 129 | $\mathrm{C}_{8}, \mathrm{C}_{12}$ | 9 | 132 | $\mathrm{C}_{1}, \mathrm{C}_{12}$ |
| 4 | 256 | C_{2} | 5 | 137 | $\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{12}$ |
| | | | 5 | 392 | $\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{12}$ |
| | | | 4 | 1 | C_{8} |
| | | | 4 | 168 | $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{12}$ |
| | | | 4 | 384 | $\mathrm{C}_{2}, \mathrm{C}_{12}$ |

TABLE 9: LOCATION-2: PANEL 3 (Working days $=235$)	TABLE 10: LOCATION-2: PANEL 4 (Working days 286)				
Frequency	Code total	Combination	Frequency	Code total	Combination
29	136	$\mathrm{C}_{4}, \mathrm{C}_{12}$	32	64	C_{10}
27	128	C_{12}	32	128	C_{12}
25	0	No Breakdown	18	129	$\mathrm{C}_{8}, \mathrm{C}_{12}$
20	8	C_{4}	13	2	C_{3}
14	129	$\mathrm{C}_{8}, \mathrm{C}_{12}$	13	130	$\mathrm{C}_{3}, \mathrm{C}_{12}$
11	64	C_{10}	11	131	$\mathrm{C}_{3}, \mathrm{C}_{8}, \mathrm{C}_{12}$
11	132	$\mathrm{C}_{1}, \mathrm{C}_{12}$	8	136	$\mathrm{C}_{4}, \mathrm{C}_{12}$
9	137	$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{12}$	8	192	$\mathrm{C}_{10}, \mathrm{C}_{12}$
9	160	$\mathrm{C}_{5}, \mathrm{C}_{12}$	7	161	$\mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$
6	32	C_{5}	6	132	$\mathrm{C}_{1}, \mathrm{C}_{12}$
6	164	$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{12}$	6	162	$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$
6	165	$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{12}$	5	32	C_{5}
5	140	$\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{12}$	5	133	$\mathrm{C}_{1}, \mathrm{C}_{8}, \mathrm{C}_{12}$
5	168	$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{12}$	5	135	$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{8}, \mathrm{C}_{12}$
			5	137	$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{12}$
			5	139	$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{12}$

TABLE 11: LOCATION-2: PANEL 5 (Working days = 303)

Frequency	Code total	Combination
18	64	C_{10}

17	137	$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{12}$
13	1	C_{8}
13	9	$\mathrm{C}_{4}, \mathrm{C}_{8}$
12	73	$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{10}$
10	8	C_{4}
10	72	$\mathrm{C}_{4}, \mathrm{C}_{10}$
8	65	$\mathrm{C}_{8}, \mathrm{C}_{12}$
8	89	$\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{10}$
8	129	$\mathrm{C}_{8}, \mathrm{C}_{12}$
8	203	$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{12}$
7	192	$\mathrm{C}_{10}, \mathrm{C}_{12}$
7	201	$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{12}$
7	217	$\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{12}$

B) LOCATION-2:

C_{12} alone occurred on 48 days out of 139 days in Panel 1, while C_{11} alone accounts for 14 days and C_{2} for 4 days individually. Among the combinations, C_{12} has occurred with either of $\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{8} singly or severally.

In Panel 2, C_{12} alone accounts for 91 days in 286 days while C_{10} occurred for 30 days and C_{4} for 20 days, C_{3} for 13 days and C_{8} for 4 days. In the combinations C_{12} is most frequent with $\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{5}, \mathrm{C}_{1}$ and C_{2} either pair wise or more than two at a time.

Out of 235 days, there is no breakdown for 25 days. Among the occurrences, the causes $\mathrm{C} 12, \mathrm{C}_{4}, \mathrm{C}_{10}, \mathrm{C}_{5}$ individually have taken place for $27,20,11$ and 6 days respectively in Panel 3. In combinations C_{12} is most frequent with one or more of $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{1}$ and C_{8}.

Panel 4 of Location-2 experienced an equal number of occurrences of C_{10} and C_{12}, each for 32 days in 286 days. Individuals to follow are C_{3} and C_{5} with 13 and 5 days as the frequencies. C12 and C8 dominate pair wise occurrences. C_{12} with $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{10}$ and C_{1} are to follow in that order with respect to their frequencies. In the combination of three or more causes C_{12} and C_{8} have occurred either with $\mathrm{C}_{5}, \mathrm{C}_{3}, \mathrm{C}_{1}$ or C_{4}.

Out of 303 days, $\mathrm{C}_{10}, \mathrm{C}_{8}$ and C_{4} have individually accounted for 18,13 and 10 days respectively in Panel 5. Among the combinations of two or more occurrences $\mathrm{C}_{12}, \mathrm{C}_{10}$ and C_{8} are the ones, which are most frequent.

[^5]International Journal of Management, IT and Engineering http://www.ijmra.us

At Location-2, it is observed that C_{12} is the most predominantly occurring cause of down time and is a crucial variable. It is found to occur in combinations with $\mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{4}$ and C_{5}. VI) ASSOCIATION OF DOWN TIME CAUSES:

To check for the association between the occurrences of C_{1} to C_{12} a bi-variate frequency table has been obtained from among the occurrences of the variables. The frequency of occurrence of C_{8} with others and C_{1} with others as a bivariate has been calculated as shown below.

Causes	C_{8} and Others	Others but not C_{8}	Total
C_{1} \& others	65	3	68
Others but not C_{1}	60	76	136
Total	125	79	204

The expected frequency Table has been calculated as

$(68 \times 125) / 204=42$	$(68-42)=26$
$(125-42)=83$	$(79-26)=53$

Using $\quad \chi^{2}=\sum\left\{\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}\right\}$, it is possible to check for the association between the selected pair (say C_{1} and C_{8}).

This analysis has been carried out on some of selected most frequently occurring pairs. The results are tabulated with the pair, observed frequency $\left(\mathrm{O}_{\mathrm{i}}\right)$, Total 1,Total 2, Expected Frequency $\left(\mathrm{E}_{\mathrm{i}}\right)$ and Chi-square value. For the example shown, the pair is $\left(\mathrm{C}_{1}, \mathrm{C}_{8}\right)$, observed frequency $=65$, total $1=68$, total $2=125$, Grand Total $=204$.

Expected frequency $=($ Total $1 \times$ Total 2$) /($ Grand Total $)=42$ and the value of $\chi^{2}=$ 49.296.

By comparing the calculated value of Chi-square with the tabulated value for 1 d.f., it may be concluded that the pair $\left(\mathrm{C}_{1}, \mathrm{C}_{8}\right)$ in Panel 1 is associated. The details regarding various selected pairs are presented below. S in bracket indicates the significance of Chi-square value at $\alpha=5 \%$ Level of Significance.

TABLE 12:Association of Down time Causes at Location-1:

Pair	O_{i}	Total 1	Total 2	E_{i}	Chi- Square
Location-1: Panel 1(204):					
$\mathrm{C}_{1}, \mathrm{C}_{8}$	65	68	125	42	$49.296(\mathrm{~S})$
$\mathrm{C}_{4}, \mathrm{C}_{8}$	43	65	125	40	0.858

[^6]International Journal of Management, IT and Engineering http://www.ijmra.us

$\mathrm{C}_{3}, \mathrm{C}_{8}$	42	76	125	47	2.214
$\mathrm{C}_{6}, \mathrm{C}_{8}$	37	61	125	38	0.099
$\mathrm{C}_{1}, \mathrm{C}_{4}$	30	68	65	42	$13.419(\mathrm{~S})$
$\mathrm{C}_{3}, \mathrm{C}_{6}$	29	76	61	23	3.592
$\mathrm{C}_{1}, \mathrm{C}_{3}$	22	68	76	25	0.852
$\mathrm{C}_{5}, \mathrm{C}_{8}$	22	47	125	29	$5.726(\mathrm{~S})$
Location-1: Panel 2(93):					
$\mathrm{C}_{5}, \mathrm{C}_{12}$	37	54	67	39	0.856
$\mathrm{C}_{3}, \mathrm{C}_{12}$	33	47	67	34	0.517

Location-1: Panel 3(128):

$\mathrm{C}_{8}, \mathrm{C}_{12}$	34	40	43	13	$72.56(\mathrm{~S})$
$\mathrm{C}_{5}, \mathrm{C}_{12}$	23	30	43	10	$33.07(\mathrm{~S})$
$\mathrm{C}_{6}, \mathrm{C}_{12}$	23	40	43	13	$16.45(\mathrm{~S})$
$\mathrm{C}_{3}, \mathrm{C}_{8}$	22	32	40	10	$27.93(\mathrm{~S})$
$\mathrm{C}_{5}, \mathrm{C}_{8}$	21	30	40	9	$29.65(\mathrm{~S})$
$\mathrm{C}_{3}, \mathrm{C}_{12}$	19	32	43	11	$11.87(\mathrm{~S})$

Location-1: Panel 4(377):

$\mathrm{C}_{8}, \mathrm{C}_{12}$	69	136	89	32	$87.402(\mathrm{~S})$
$\mathrm{C}_{5}, \mathrm{C}_{12}$	63	76	89	18	$184.739(\mathrm{~S})$
$\mathrm{C}_{3}, \mathrm{C}_{8}$	56	168	136	61	1.163
$\mathrm{C}_{6}, \mathrm{C}_{8}$	54	98	136	36	$19.276(\mathrm{~S})$
$\mathrm{C}_{5}, \mathrm{C}_{8}$	53	76	136	28	$44.368(\mathrm{~S})$
$\mathrm{C}_{3}, \mathrm{C}_{6}$	52	168	98	44	3.569
$\mathrm{C}_{3}, \mathrm{C}_{12}$	48	168	89	40	3.806
$\mathrm{C}_{4}, \mathrm{C}_{8}$	48	101	136	37	$7.067(\mathrm{~S})$
$\mathrm{C}_{6}, \mathrm{C}_{12}$	46	98	89	23	$40.552(\mathrm{~S})$
$\mathrm{C}_{3}, \mathrm{C}_{4}$	45	168	101	45	0.000
$\mathrm{C}_{8}, \mathrm{C}_{10}$	45	136	96	35	$6.042(\mathrm{~S})$

All with 1 d.f.

TABLE 13:Association of Down time Causes at Location-2:

Pair	O_{i}	Total 1	Total 2	E_{i}	Chi-Square
Location-2: Panel 1(139):					
$\mathrm{C}_{1}, \mathrm{C}_{12}$	19	21	107	16	2.795
Location-2: Panel 2(286):					
$\mathrm{C}_{4}, \mathrm{C}_{12}$	63	90	208	65	0.325
$\mathrm{C}_{8}, \mathrm{C}_{12}$	35	42	208	31	2.300
$\mathrm{C}_{5}, \mathrm{C}_{12}$	26	31	208	23	1.690

International Journal of Management, IT and Engineering

$\mathrm{C}_{1}, \mathrm{C}_{12}$	22	24	208	18	3.862 (s) ${ }^{\text {* }}$
Location-2: Panel 3(235):					
$\mathrm{C}_{4}, \mathrm{C}_{12}$	61	94	148	59	0.304
$\mathrm{C}_{8}, \mathrm{C}_{12}$	39	48	148	30	9.060 (S)
$\mathrm{C}_{1}, \mathrm{C}_{12}$	35	38	148	24	16.318 (S)
$\mathrm{C}_{5}, \mathrm{C}_{12}$	34	49	148	31	0.998
Location-2: Panel 4(286):					
$\mathrm{C}_{8}, \mathrm{C}_{12}$	112	138	195	94	20.912 (S)
$\mathrm{C}_{3}, \mathrm{C}_{12}$	66	96	195	65	0.072
$\mathrm{C}_{3}, \mathrm{C}_{8}$	61	96	138	46	14.133 (S)
$\mathrm{C}_{5}, \mathrm{C}_{8}$	47	67	138	32	17.574 (S)
$\mathrm{C}_{5}, \mathrm{C}_{12}$	44	67	195	46	0.361
$\mathrm{C}_{4}, \mathrm{C}_{12}$	42	61	195	42	0.000
$\mathrm{C}_{1}, \mathrm{C}_{12}$	40	50	195	34	4.012 (S)
$\mathrm{C}_{4}, \mathrm{C}_{8}$	40	61	138	29	10.107 (S)
$\mathrm{C}_{1}, \mathrm{C}_{8}$	38	50	138	24	19.031 (S)
Location-2: Panel 5(303):					
$\mathrm{C}_{4}, \mathrm{C}_{8}$	133	178	210	123	6.412(S)
$\mathrm{C}_{8}, \mathrm{C}_{12}$	104	210	128	89	14.324 (S)
$\mathrm{C}_{8}, \mathrm{C}_{10}$	95	210	148	103	3.974(S)*
$\mathrm{C}_{4}, \mathrm{C}_{12}$	87	178	128	75	8.035 (S)
$\mathrm{C}_{4}, \mathrm{C}_{10}$	81	178	148	87	1.962
$\mathrm{C}_{6}, \mathrm{C}_{8}$	67	77	210	33	82.296 (S)
$\mathrm{C}_{3}, \mathrm{C}_{8}$	61	77	210	53	5.209 (S)
$\mathrm{C}_{4}, \mathrm{C}_{6}$	53	178	77	45	4.592 (S)
$\mathrm{C}_{3}, \mathrm{C}_{4}$	47	77	178	45	0.287
$\mathrm{C}_{3}, \mathrm{C}_{12}$	38	77	128	33	1.780
All with 1 d.f. (*BARELY SIGNIFICANT AT 5\%)					

VII) ANALYSIS:

The occurrence of significant pairs with C_{8} from Tables 12 and 13 are:

Location-1		Location-2	
$\left(\mathrm{C}_{8}, \mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{8}, \mathrm{C}_{5}\right)$	Panel 1	$\left(\mathrm{C}_{8}, \mathrm{C}_{12}\right)$	Panel 3
$\left(\mathrm{C}_{8}, \mathrm{C}_{12}\right),\left(\mathrm{C}_{8}, \mathrm{C}_{3}\right)$ and $\left(\mathrm{C}_{8}, \mathrm{C}_{5}\right)$	Panel 3	$\left(\mathrm{C}_{8}, \mathrm{C}_{12}\right),\left(\mathrm{C}_{8}, \mathrm{C}_{3}\right),\left(\mathrm{C}_{8}, \mathrm{C}_{5}\right)$,	Panel 4
		$\left(\mathrm{C}_{8}, \mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{8}, \mathrm{C}_{1}\right)$	
$\left(\mathrm{C}_{8}, \mathrm{C}_{12}\right),\left(\mathrm{C}_{8}, \mathrm{C}_{6}\right),\left(\mathrm{C}_{8}, \mathrm{C}_{5}\right)$,	Panel 4	$\left(\mathrm{C}_{8}, \mathrm{C}_{4}\right),\left(\mathrm{C}_{8}, \mathrm{C}_{12}\right),\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right)$,	Panel 5
$\left(\mathrm{C}_{8}, \mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{8}, \mathrm{C}_{10}\right)$		$\left(\mathrm{C}_{8}, \mathrm{C}_{6}\right)$ and $\left(\mathrm{C}_{8}, \mathrm{C}_{3}\right)$	

C_{8} is occurring quite significantly with other causes. It only means that various specified causes are associated with various other causes, which have not been specifically identified. This fact strengthens the feeling that it would be better if this could be looked into depth to identify, which other specific causes may be occurring under this heading.

With C_{1} the following significant pairs are noticed.

Location-1		Location-2	
$\left(\mathrm{C}_{1}, \mathrm{C}_{4}\right)$	Panel 1	$\left(\mathrm{C}_{1}, \mathrm{C}_{12}\right)$	Panel 2
		$\left(\mathrm{C}_{1}, \mathrm{C}_{12}\right)$	Panel 3
		$\left(\mathrm{C}_{1}, \mathrm{C}_{12}\right)$	Panel 4

The problem of Incoming Power $\left(C_{1}\right)$ has a tendency of preventing the occurrence of other causes and hence one should except a negative association, if not any interference. We find that $\left(\mathrm{C}_{1}, \mathrm{C}_{4}\right)$ is significant and as expected has a negative association (Expected under independency of hypothesis is 42 and the observed occurrences are only 30). While ($\mathrm{C}_{1}, \mathrm{C}_{12}$) is barely significant and hence no importance need be given for this cause.

From the remaining, the significant pairs of combinations are

Location-2	
$\left(\mathrm{C}_{12}, \mathrm{C}_{5}\right),\left(\mathrm{C}_{12}, \mathrm{C}_{6}\right)$ and $\left(\mathrm{C}_{12}, \mathrm{C}_{3}\right)$	Panel 3
$\left(\mathrm{C}_{12}, \mathrm{C}_{5}\right)$ and $\left(\mathrm{C}_{12}, \mathrm{C}_{6}\right)$	Panel 4
$\left(\mathrm{C}_{12}, \mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{6}, \mathrm{C}_{4}\right)$	Panel 5

Whenever the combinations which are significant and are present in the panels of the same place, then it suggests the possibility of special reasons common to geological location, management, equipment and so on.

IX) CAUSE - PATTERN ANALYSIS:

Tables 14 and 15 present Panel-wise information of these 12 causes in each of the panels according to their occurrence either singly or in combination and if in combination, with what causes they are occurring.

Table-14: Cause pattern analysis of Location-1:

PANEL NO.		1	2	3	4
Working days		204	93	128	377
C_{1}	Singly	0	0	0	0
	Combination	68	15	7	17

	With What Others	$\begin{aligned} & 2,3,4,5,6, \\ & 8,12 \end{aligned}$	$\begin{aligned} & \hline 3,4,5,6, \\ & 8,12 \end{aligned}$	$\begin{aligned} & \text { 2,3,4,5,6, } \\ & 8,12 \end{aligned}$	$\begin{aligned} & \text { 2,3,4,5,6,8, } \\ & 10,11,12 \end{aligned}$
C_{2}	Singly	0	0	0	0
	Combination	15	2	3	18
	With What Others	$\begin{aligned} & 1,3,4,5,6,8, \\ & 10,12 \end{aligned}$	$\begin{aligned} & \hline 3,4,5,6, \\ & 8,12 \end{aligned}$	$\begin{aligned} & \hline 1,3,4,6, \\ & 8,12 \end{aligned}$	$\begin{aligned} & 1,3,4,5,6, \\ & 7,8,12 \end{aligned}$
C_{3}	Singly	10	0	2	66
	Combination	66	47	30	102
	With What Others	$\begin{aligned} & \hline 1,2,4,5,6,8 \\ & 10,11,12 \end{aligned}$	1,2,4,5,6,8,12	$\begin{aligned} & \hline 1,2,4,5,6,8, \\ & 12 \end{aligned}$	$\begin{aligned} & 1,2,4,5,6,7 \\ & 8,10,11,12 \end{aligned}$
C_{4}	Singly	7	0	19	21
	Combination	58	32	22	80
	With What Others	$\begin{aligned} & 1,2,3,5,6,8, \\ & 10,12 \end{aligned}$	$\begin{aligned} & 1,2,3,5, \\ & 6,8,12 \end{aligned}$	$\begin{aligned} & 1,2,3,5,6, \\ & 8,12 \end{aligned}$	$\begin{aligned} & \hline 1,2,3,5,6,7 \\ & 8,10,11,12 \end{aligned}$
C_{5}	Singly	1	0	2	2
	Combination	46	54	28	74
	With What Others	$\begin{aligned} & \hline 1,2,3,4,6,7 \\ & 8,10,12 \end{aligned}$	1,2,3,4,6,8,12	$\begin{aligned} & \hline 1,3,4,6 \\ & 8,12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,6,7 \\ & 8,10,11,12 \end{aligned}$
C_{6}	Singly	0	0	7	9
	Combination	61	- 35	33	89
	With What Others	$\begin{aligned} & 1,2,3,4,5 \\ & 8,10,12 \end{aligned}$	1,2,3,4,5,8,12	$\begin{aligned} & 1,2,3,4,5, \\ & 8,12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5,7 \\ & 8,10,11,12 \end{aligned}$
C_{7}	Singly	0	0	0	0
	Combination	1	0	0	18
	With What Others	5	---	---	$\begin{aligned} & 2,3,4,5,6,8, \\ & 10,12 \end{aligned}$
C_{8}	Singly	10	0	0	6
	Combination	115	87	40	130
	With What Others	$\begin{aligned} & 1,2,3,4,5,6, \\ & 10,12 \end{aligned}$	1,2,3,4,5,6,12	$\begin{aligned} & \text { 1,2,3,4,5, } \\ & 6,12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5,6 \\ & 7,10,11,12 \end{aligned}$
C9	Singly	2	0	0	0
	Combination	0	0	0	0
	With What Others	---	---	---	---
C_{10}	Singly	4	0	38	38
	Combination	28	0	0	58
	With What Others	$\begin{aligned} & 2,3,4,5,6, \\ & 8,11 \end{aligned}$	---	---	$\begin{aligned} & 1,3,4,5,6,7 \\ & 8,11,12 \end{aligned}$
C_{11}	Singly	0	0	0	2
	Combination	1	0	0	6

	With What Others	3,10	---	---	$\begin{aligned} & 1,3,4,5,6,8, \\ & 10,12 \end{aligned}$
C_{12}	Singly	5	1	1	0
	Combination	18	66	42	89
	With What Others	$\begin{aligned} & 1,2,3,4,5 \\ & 6,8 \end{aligned}$	1,2,3,4,5,6,8	1,2,3,4,5, 6,8	$\begin{aligned} & \text { 1,2,3,4,5,6, } \\ & 7,8,10,11 \end{aligned}$
No. of days no cause occurred		5	1	0	36

Table-15: Cause pattern analysis of Location-2:

PANEL NO.		1	2	3	4	5
Working days		139	286	235	286	303
C_{1}	Singly	2	1	1	0	0
	Combination	19	23	37	50	8
	With What Others	$\begin{aligned} & 2,4,5, \\ & 8,12 \end{aligned}$	$\begin{aligned} & 2,4,5 \\ & 8,12 \end{aligned}$	$\begin{aligned} & 2,4,5 \\ & 8,12 \end{aligned}$	$\begin{aligned} & 2,3,4,5,6 \\ & 7,8,10,12 \end{aligned}$	$\begin{aligned} & 2,3,4,6,8,10 \\ & 12 \end{aligned}$
C_{2}	Singly	4	0	2	0	0
	Combination	11	14	13	17	19
	With What Others	$\begin{aligned} & 1,4,5,8 \\ & 10,12 \end{aligned}$	1,4,5,8, 12	$\begin{aligned} & 1,3,4,8 \\ & 10,12 \end{aligned}$	$\begin{aligned} & 1,3,4,5,6,7, \\ & 8,10,12 \end{aligned}$	$\begin{aligned} & 1,3,4,6,7,8, \\ & 10,12 \end{aligned}$
C_{3}	Singly	2	13	2	13	5
	Combination	8	1	10	83	72
	With What Others	5,6,12	8	$\begin{aligned} & \hline 2,4,5 \\ & 8,12 \end{aligned}$	$\begin{aligned} & 1,2,4,5,6,8, \\ & 10,12 \end{aligned}$	$\begin{aligned} & 1,2,4,5,6,7, \\ & 8,9,10,11,12 \end{aligned}$
C_{4}	Singly	0	20	20	2	10
	Combination	13	70	74	59	168
	With What Others	1,2,12	1,2,5,8, 12	$\begin{aligned} & 1,2,3,5, \\ & 6,8,10,12 \end{aligned}$	$\begin{aligned} & \hline 1,2,3,5,6 \\ & 7,8,10,11,12 \end{aligned}$	$\begin{aligned} & \hline 1,2,3,5,6,7, \\ & 8,9,10,11,12 \end{aligned}$
C_{5}	Singly	1	1	6	5	1
	Combination	11	30	43	62	21
	With What Others	1,2,3,8, 12	1,2,4,8, 12	$\begin{aligned} & 1,2,3,4,8, \\ & 12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,6,7, \\ & 8,10,11,12 \end{aligned}$	$\begin{aligned} & \hline 3,4,6,7,8,9, \\ & 10,12 \end{aligned}$
C6	Singly	0	0	0	0	0
	Combination	1	2	3	23	77
	With What Others	3,12	10,12	4,12	$\begin{aligned} & 1,2,3,4,5,7, \\ & 8,10,12 \end{aligned}$	$\begin{aligned} & \hline 1,2,3,4,5,7, \\ & 8,9,10,11,12 \end{aligned}$
C_{7}	Singly	0	0	0	0	0
	Combination	0	0	0	4	13
	With What	---	---	---	1,2,4,5,6, 8 ,	2,3,4,5,6,8,

International Journal of Management, IT and Engineering

	Others				10,12	9,10,11,12
C_{8}	Singly	1	4	2	4	13
	Combination	9	38	46	134	197
	With What Others	$\begin{aligned} & \hline 1,2,5, \\ & 10,11,12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5, \\ & 12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5, \\ & 10,12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5,6, \\ & 7,10,12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5,6 \\ & 7,9,10,11,12 \end{aligned}$
C_{9}	Singly	0	0	0	0	0
	Combination	0	0	0	0	6
	With What Others	---	---	---	---	$\begin{aligned} & 3,4,5,6,7,8, \\ & 10,12 \end{aligned}$
C_{10}	Singly	2	30	11	32	18
	Combination	3	2	3	42	130
	With What Others	2,8,12	4,6	2,4,8,12	$\begin{aligned} & 1,2,3,4,5,6 \\ & 7,8,12 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5,6 \\ & 7,8,9,11,12 \end{aligned}$
C_{11}	Singly	14	0	0	0	1
	Combination	2	0	0	2	10
	With What Others	8	---	---	4,5,12	3,4,6,7,8,10
C_{12}	Singly	48	91	27	32	1
	Combination	59	117	121	163	127
	With What Others	$\begin{aligned} & \hline 1,2,3,4 \\ & 5,6,8,10 \end{aligned}$	$\begin{aligned} & 1,2,4,5, \\ & 6,8 \end{aligned}$	$\begin{aligned} & 1,2,3,4 \\ & 5,6,8,10 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5 \\ & 6,7,8,10,11 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5,6 \\ & 7,8,9,10 \end{aligned}$
No. of days no cause occurred		3	0	25	2	1

In general it is found that very a few of the causes occur singly in any of the panels. The exceptions being C_{10} occurring singly in panels 3 and 4 of Location- 1 and Panels 2, 4 and 5 of Location-2 and C_{12} in Panels 1, 2, 3 and 4 of Location-2. Thus, mostly the faults occur in combination with others, though their "degree of association" is mostly not significant.

X) CONCLUSIONS:

1) It is observed that C_{8} and C_{12} are crucial and are found to occur in combinations with others at Location-1.

At Location-2, it is observed that C_{12} is the most predominantly occurring cause of down time and is a crucial variable. It is found to occur in combinations with $\mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{4}$ and C_{5}.
2)
C_{8} is occurring quite significantly with other causes. It only means that various specified causes are associated with various other causes which have not been specifically
identified. This fact strengthens the feeling that it would be better if this could be looked into depth to identify which other specific causes may be occurring under this heading.

XI) APPLICABILITY OF THE STUDY:

 on by understanding environment of the panel.The understanding on the previous panels always can be used as database and compared with the new panels under consideration. This comparison is of immense use in either eliminating or minimising the occurrence of down time causes leading to enhanced working hours and higher production. In addition, the managers can forecast the need for materials, components, spares in advance and get ready for any type of eventuality and control them.

XII) REFERENCES:

 John Wiley \& Sons, NY,1977.Krishna Reddy, B., "Analysis and Modelling of Coal Mining Systems", Ph.D. Thesis, Osmania University, Hyderabad, 1992.

Lata Sujatha, T, "Outsourcing Practices in Healthcare Industry - A study of Select Hospitals", Ph.D. Thesis, Osmania University, Hyderabad, 2008.

Peng., Syd S. and Chiang., H.S., "Longwall Mining", John Wiley \& Sons, NY,1984.
Seber, G.A.F., "Multivariate Observations", John Wiley \& Sons, NY,1984.

[^7]
International Journal of Management, IT and Engineering

 http://www.ijmra.us
[^0]: * Department of Business Management, Osmania University, Hyderabad, A.P., INDIA.

[^1]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

 International Journal of Management, IT and Engineering http://www.ijmra.us

[^2]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

[^3]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

 ## International Journal of Management, IT and Engineering

 http://www.ijmra.us[^4]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

 International Journal of Management, IT and Engineering http://www.ijmra.us

[^5]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

[^6]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

[^7]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

